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Computability from the foundational point of view

Chi Tat Chong
National Univesity of Singapore

chongct@nus.edu.sg

The notion of computation goes back several thousand years. Historically
mathematics began with the need for performing computation, and the solution of
mathematical problems was based on the algorithmic apprdeh.evolution to
mathematical abstraction is a relatively recent development. This talk will discuss the
role Ocomputability” plays in mathematical investigations, and problems as well as

issues it raises in the foundations of mathematics.
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Simple betting strategies in warped casinos
George Barmpalia$

1Chinese Academy of Sciences, Beijing, China.

Abstract

Suppose that you know the casino roulette is rigged and there is an
imbalance of red/black outcomes, at least in the limit. Then there is a
strategy which only bets on red or only bets on black, which guarantees
you unbounded probt. More generally, suppose that you have the restric-
tion that you cannot bet the dollars you earn by betting on red, to bet
on black and vice-versa. In the same casino there is a successful strategy
of this kind, which does not depend on where the bias is (red or black) or
even the degree of the bias (ie how far from 1/2 each outcome frequency
can get in the limit).

Sometimes casinos are rigged in more subtle ways, while satisfying all
commonly used laws of large numbers like the relative frequency limit of
each outcome tending to 1/2. Then are there simple winning strategies?
We study this question from an algorithmic perspective, which is a natural
approach since it is reasonable to expect that a strategy is programmable
in a computer. We show that in the case of programmable strategies the
answer is positive while in the case of countable mixtures of programmable
strategies the answer is negative.

This is joint work with Fang Nan and Andy Lewis-Pye.

' Barmpalias was supported by the 1000 Talents Program for Young Scholars from the
Chinese Government No. D1101130, NSFC grant No. 11750110425 and Grant No. ISCAS-
2015-07 from the Institute of Software.



Forcing in bounded arithmetic for small
complexity classes

Satoru Kuroda

Department of Liberal Arts, Gunma Prefectural WomenOs University

Forcing is one of the most powerful tools in mathematical logic. Besides many
independence results in set theory, it also plays important roles in other branches
of mathematical logic such as recursion theory.

It is also expected that forcing proves independence results in bounded arith-
metic. The brst application of forcing in bounded arithmetic was given by Paris
and Wilkie [4] who proved that the theory IE 1(R) does not prove thatR is a
bijection from n+1 to n.

Using nonstandard construction and a version of switching lemma, Ajtai [1]
proved the celebrated result thatl! o(R) does not prove the pigeonhole principle
for R.

Somewhat dilerent approach was made by Kraj@gek. He asked for construc-
tions of nonstandard models of weak theories in which complexity theoretical
properties such asP £ NP holds. In this line he gave two forcing construction
of weak theories, namely

B Any nonstandard countable model ofPV in which NP !" P can be extended
to a model of the same theory in whichNP !" coNP [3].

P Any nonstandard countable model ofV! in which " does not have extended
Frege proofs can be extended to a model of the same theory in whiok" is
unsatisbable [2].

The third wave of forcing in bounded arithmetic was brought by two papers of
Takeuti and Yasumoto [5], [6]. They established a neat theory of Boolean valued
models constructed from nonstandard models of bounded arithmetic. The recipe
for constructing Takeuti-Yasumoto generic extension is as follows:

1. Let (Mo, M) be a countable nonstandard model of some weak system.

2. Debne a Boolean algebr® which represents some complexity clas€.

3. Debne an ideal " B which represents a property that we want to rule out
from the generic extensions.

4. Then genericG " B over| debnes a generic extension fdC.

Although their approach contains many useful techniques, they did not present
any construction of generic models with particular properties.

In this talk we will give a rePnement of Takeuti-Yasumoto type forcing con-
struction. Unlike Takeuti-YasumotoOs approach, we start with any countable
nonstandard model of bounded arithmetic. Takeuti-Yasumoto type generic mod-
els are constructed a Boolean algebra which represents a given complexity class.
Namely the following Boolean algebras are constructed:



b Bnc : which consists of Boolean formulas,
b B_ which consists of branching programs and
P BnL which consists of Boolean formulas with transitive closure connectives.

In the following theorems we assume that 1¢.M ) is not closed under expo-
nentiation. Then it is proved that generic extensions constructed from each of
the above Boolean algebras is a model of the corresponding theory.

Theorem 1. Let Cbe eitherNC?, L or NL. If G" B¢ is a M -generic then
(Mo,M[G]) F VC

It turns out that generic extensions constructed as above are related to com-
putational complexity and the size of propositional proofs.

Theorem 2. Let C be either NC!, L or NL. If (Mg,M) E P " C then
(Mo,M[G]) E VP for any M -genericG " Bc.

Then converse also holds:

Theorem 3. Let Che eitherNC?, L or NL and (Mo,M) F VC. If (Mo,M) E
P I"C then (Mo,M [G]) F VP for someM -genericG" Be.

Similar connections hold for propositional provability in the ground model
and generic extensions.

Theorem 4. Let (Mo,M) E V1! and suppose that the following conditions hold
in (Mg,M):

b Gy p-simulates G} .
D Any #8 theorem of V! has polynomial sizeG}, -proofs.

Then (Mo, M [G]) F VP for any M -genericG" Byc:.
It is not known whether the converse holds. Nevertheless, the following holds.

Theorem 5. Let (Mg,M) E V1 and suppose that in(Mgy, M) there is no Go-
proof of the propositional statement that any circuit can be evaluated. Then
(Mo,M[G]) ¥ VP for someM -genericG" Byc:.

References
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Weihrauch degrees of numerical problems
Ncomparison with arithmeticN

Keita Yokoyama'

Japan Advanced Institute of Science and Technology
y-keita@jaist.ac.jp

The Weihracuch degree of a binary relation on Baire space measures the
power of uniform computation of a problem debned on Baire space. In the recent
studies of Weihrauch degrees, it is seen that its structure resembles the structure
of second-order arithmetic in the sense of reverse mathematics.

In the study of reverse mathematics, it is important to isolate the brst-order
consequences of essential axioms/principles. Then, can we do a similar analysis
for Weihrauch degrees? In this talk, we consider a hierarchy of Weihrauch degrees
of numerical problems inspired by Kirby-Paris hierarchy of brst-order arithmetic.
Then, we see that the class of numerical problems which are reducible to a major
Weihrauch degree can often be captured by a numerical problem in the above
hierarchy. By this way, one may classify Weihrauch degrees by their Obrst-orderO
strength.

This is a joint work with Damir Dzhafarov and Reed Solomon.

' This work is partially supported by JSPS KAKENHI (grant numbers 16K17640 and
15H03634) and JSPS Core-to-Core Program (A. Advanced Research Networks).



Effectivity and Reducibility with Ordinal Turing Machines

Merlin Carl
merlin.carl@unikonstanz.de
EuropaUniversitSt Flensburg

By its reliance on Turing computability, the classical theory of effectivity, along
with effective reducibility and Weihrauch reducibility, is only applicable to objects that
are either countable or can be encoded by countable objects. We propose a notion of
effectivity based on Koepke's Ordinal Turing Machines (OTMs) that applies to arbitrary
settheoretical $Pi_{2}$-statements, along with according variants of effective
reducibility and Véihrauch reducibility. As a sample application, we compare various
choice principles with respect to effectivity. We also propose a generalization to set
theoretical formulas of arbitrary quantifier complexity.



IDEAL -VERSIONS OF BOLZANO-WEIERSTRASS
PROPERTY

JIAKUI YU AND SHUGUO ZHANG

College ofMathematics, Sichuan University

Abstract.
Let I, J be ideals othe set of natural numbers, we say that a space X has
(I,.J »>BW property if every sequence in X contains acdnverging subsequence
indexed by an-positive set. This is a common generalization of-BX& properties
types. We obtain some characterizatiohd;J }BW property.



On equivalence relations generated by Cauchy
sequences in countable metric spaces

Longyun Ding"!

1School of mathematical sciences, Nankai University, Tianjin 300071, China

Abstract

Let X be the set of all metrics on !, and let X be the set of all
metrics r on! that the completion of (!,r ) is compact. We debne Cauchy
sequence equivalence relationE¢s on X as: rE s i! the set of Cauchy
sequences in(!,r ) is same as in(!,s ). We also denote Ecsc = Ecs ! Xcpt -

We show that E.s is a! i-complete equivalence relation, while E s is
a! 9 equivalence relation. We also show that Es. is Borel bireducible to
an orbit equivalence relation. Furthermore, we tried to bnd out the Borel
reducibility between E.sc and some benchmark equivalence relations. For
instance, we show that =* and R' /co are Borel reducible to Ecsc, and E;
is not.

Restrictions of Ecsc on some special subsets oK, are also considered.

This is a joint work with Kai Gu.

! dinglongyun@gmail.com



Pmax-style extension for basis problem of uncountable
linear order

Liuzhen Wu
lzwu@math.ac.cn
Chinese Academy of Sciences, China

Moore proves that under PFA, there is a five elerbasts for uncountable linear
order. In a joint work with Yinhe Peng, we study the possible size of a basis for

uncountable linear order in Pmagyle extension.



Is an alternative foundation of set theory possible?

Ruizhi Yang
Fudan University

Hamkins and Kikuchi (2016) showed the-8&toretic mereology has a complete
decidable theory, hence cannot server as a foundation theory of mathematics. We
extend their program to investigate more reducts of the full structrurkeo$et
theoretic universe. We find that many natural reducts are either completely
axiomatizable or carrying the full information of the unvierse. In particular, we showed
the structure of arbitrary union has a complete decidable theory. This is a jdint wo

with Joel. D. Hamkins.
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Working with computable Lipschitz
reducibility above (uniformly) non- low, c.e.
degrees

Yun Fan &1

aDepartment of Mathematics, Southeast University, Nanjing, China

Abstract

Computable Lipschitz reducibility is a strengthening of weak truth table
reducibility, based on computations where the use on the oracle at argument
n is bounded byn + c for some constantc. Recall that a degreed is non-
low, if for any total function f ! ¢ "' there is a total function computable
in d which is not dominated byf. Non-low,-ness is an important notion
in Turing degrees. After introducing a uniform version of non-loyness, if
a c.e. Turing degred is uniformly non-low,, then for any non-computable

I 9 real there is a c.e. real ird such that both of them have no common
upper bound in c.e. reals under cl-reducibility. In this talk, we show some
improvement on the interplay between (uniformly) nontow,-degrees and
cl-reducibility.

Email address: fanyun@seu.edu.cn (Yun Fan )
Preprint submitted to Elsevier March 5, 2019
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Models of Computations
NInformation Systems and Domains (Abstract)

Luoshan Xu
Dept. of Mathematics, Yangzhou University, Yangzhou 225002, P. R. China

Computations can be viewed as both functions and process.

In order to assign meanings to programs written in high-level programming languages, Dana
Scott invented continuous lattices [6] which is now grown up as Domain Theory [1, 2]. From state
parts of computations, domains give computations models of denotational semantics.

In theoretical computer science, order structures arise naturally. The more information some
state contains, the larger it is in the information ordering. It is a common sense that the increasing
sequence of information should give more accurate states (of computation). To guarantee the
existence of convergent states, one considers often so called continuous dcpos (i.e., domains).

From behaviour part of a computation, Dana Scott in his seminal paper [7], introduced informa-
tion systems as a logic-oriented approach to operational/denotational semantics of computations.

Traditional continuities and the Scott topology

Intuitively, we say that state x approximates statey if any computation of y yields the informa-
tion of x at some bnite stage. One of the important insights of the theory of Ocontinuous posetsO
that has emerged in the last bfty years is the following mathematical formalization.

Debnition 1. Let P be a poset,x,y ! P. We say that x approximatesy, written x " v, if
wheneverD is directed with supD ! vy, then x " d for somed ! D. We use#x to denote the
set{a! P :a" x}. If for every elementx ! P, the set#x := {a! P :a" x} is directed and
sup#x = X, then P is called acontinuous poset A continuous posetwhich is also a dcpo (resp.,
bounded complete dcpo, complete lattice) is called @ontinuous domain or brie3y a domain (resp.,
bc-domain continuous lattice).

Debnition 2. Let P be a poset andA $ P. If #A = A and, for any directed setD $ A,
supD ! A if supD exists, then A is called Scott-closed The complements of the Scott-closed sets
form a topology, called the Scott topology denoted! (P).

Theorem 3. [4, 9] A poset is continuous i! the lattice of its Scott Closed sets is a CD-lattice.
Continuous Information Systems

Debnition 4. [5, 8] An information structure S = ( A, Con, % is called a continuous information
system (in short, C-inf) if the following six conditions hold for any sets X,Y ! Con, a! A and

12



nonempty Pnite subsetF $ A:
(1) {a}! Con,
(2) X %a& X '{ a}! Con,
@) (Y ( X) X %a) & Y %a,
(4) X %Y %a& X %a,
(5) X %a& (*Z! Con)(X %Z) Z %a),
(6) X %F & (*Z! Con)(Z ( F) X %Z).
If in addition, S satisbes
(S5) (+a! X ! Con)(X %a),
then S is called analgebraic information system(in short, A-inf).

Debnition 5. [3, 5] Let S = (A, Con, % be an information structure. A subset x $ A is a state
of S if the following three conditions hold:

(1) (Pnite consistency) *+F $p, X)(*Y ! Con)(F$ Y) Y $ x),

(2) (%closedness) £X ! Con)(+a! A)(X $ x) X %a& a! x),

(3) (derivability) ( +a! x)(*X ! Con)(X $ x) X %a).

With respect to the order of set inclusion $, the states of an information structure S form a
partially ordered set, denoted by |S|.

Proposition 6. [3,5]Let S= (A, Con, % be an information structure and {x;}(i ! 1) a directed
set of [S|. Then , |g{x; :i ! I} =" X, and thus|S| is a dcpo. If S = (A, Con, 9% is a C-inf
(resp., A-inf), then |S]| is a domain (resp., an algebraic domain).

Debnition 7. [8] For a domain D with a basis B, debneS(D, B )=( B, Conp, %) such that
(1) X! Conp - X $p,B and, X existsinD;

(2) +X ! Conp,+b! B,X % b- b", X.

Then S(D, B) is called the information structure induced by domain D with basis B.

Theorem 8. [8] (1) Let D be a domain with a basiB. Then the information structure S(D,B) =
(B, Conp, %) is a C-inf. Furthermore, |S(D,B)| = D. Particularly, |S(D,D)| = D.

Debnition 9. ([8]) Let S = (A, Con, % be an information structure. DebPnewS =( A, Con, )
such that for all a! Aand X ! Con, X Fa- X'{ a}! Con and (+b! A, {a} %b& X %b).
Then wS = (A, Con, [) is called the information structure induced by S.

Theorem 10. [8] If wS = (A, Con, E) induced by a C-infS is a C-inf, then wS is an A-inf, in
this case, we will callS a weak algebraic information system, brieRy, a wA-inf.

Categorical Aspects

Debnition 11. [5, 8] An approximable mappingf : (A,Cona,%) / (B,Cong, %) between
C-infs (A,Cona, %) and (B,Cong,% ) is a relation f $ Cona 0 B satisfying the following bve
conditions:

1) (XfFF ))12F $pnB)& (*Z! Cong)(F $ Z) XfzZ),

(2) (XfY ) Y % b & Xfb,

13



(3) (X % X") X'fb) & Xfb,
(4) (X $ X'1 Cona) Xfb) & X'fb,
(5) (Xfb) & (*X"! Coma)(*Y ! Cong)(X % X") X'fY ) Y % b),
where XfY means that Xfc forall c! Y.
The compositiong3f $ Cona 0 C of relationsf $ Cona 0 B andg$ Cong 0 C is debned by

X(g3f)c- (*Y ! Cong)(XfY ) Ygq,
forall X ! Cona andc! C.

Let CINF (resp., AINF , wAINF ) be the category of C-infs (resp., A-infs, wA-infs) and
approximable mappings.

Let DOM (resp., ADOM ) be the category of domains (resp., algebraic domains) and Scott
continuous functions.

Theorem 12. [5] CategoriesCINF and wAINF are equivalent to categoryDOM , and category
AINF is equivalent to categoryADOM .
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The Brouwer Invariance Theorems in Reverse
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In his book [1], John Stillwell stated Pnding the exact strength of the Brouwer
invariance theorems as Oone of the most interesting open problems in reverse
mathematics.O In this talk, we solve this problem by showing that some forms
of the Brouwer invariance theorems are equivalent to weak KenigOs lemma over
the base systemRCAy.

Keywords: Reverse mathematicsaThe invariance of dimension theoremaThe
invariance of domain theorem.
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Schnorr triviality via decidable machines
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1 K -triviality and lowness

The research relating K -trivial reals has been a big project in the theory of
algorithmic randomness. A realA ! 2' is calledK -trivial if

K(A1n)" K(n)+ O(),

whereK is the prebx-free Kolmogorov complexity. In other words, the complex-
ities of the initial segments of A are minimal up to a constant.

The class ofK -trivial reals have many characterizations, especially by low-
ness. One of these is as follows. A read ! 2' is called low for K if K(n) "
KA (n)+ O(1). In other words, A cannot compress more than in the unrelativized
case up to a constant. It turned out that a real A is K -trivial if and only if A is
low for K.

Note that there is a noncomputableK -trivial real. In contrast, if a real A sat-
isPesC(A ! n)" C(n)+ O(1), then A should be computable. HereC is the plain
Kolmogorov complexity. To the authorsO best knowledge, no characterization of
K -trivial reals by C is known.

2 Schnorr triviality

Schnorr trivial reals is a computable-measure-machine version df -trjvial reals.

The measure of a prebx-free machingvl # 2% $ 2% is!y = {217]
"1 dom(M)}. The measure!  of a universal prebx-free machindJ is Martin-
Lef random, so!  is not computable in general. If a prebx-free machineM
has a computable measure, therM is called a computable measure machine
Computable measure machines naturally characterize Schnorr randomness.

A set A is called Schnorr trivial if, for every computable measure machine
M, there exists a computable measure machin®& such that

Kn(ATn)" Ky (n)+ OQ).

Since there is no universal computable measure machine, we need to specify
machinesM and N as above.

Similarly to K -trivial reals, Schnorr trivial reals also have characterizations
by lowness. To do that, we need uniform relativization. A setA is Schnorr trivial
if and only if A is uniformly low for computable measure machines [3].
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3 Decidable machines

A decidable machineis a machineM :# 2 $ 2 such that the domain of M

is computable. Interestingly, decidable machines characterize ML-randomness,
Schnorr randomness, and Kurtz randomness [1] (and 2-randomness in some sense
[5, Theorem 4.2]).

We also have a characterization of Schnorr triviality by decidable machines
as follows. A real A is Schnorr trivial if and only if, for each decidable prepx-
free machineM and a computable orderg, there exists a decidable prebx-free
machine N such that

Kn(Atn)" Ky (n)+ g(n)+ O().

Its reducibility version can be found in [4, Theorem 3.4, 3.5].

Schnorr triviality is also equivalent to not totally i.0. complex [2], which is
a characterization by total machines. Total machines are a decidable-machine
version of plain machines. Thus, the situation is dilerent from the case ofK -
triviality.

Further, inspired by a characterization of computable traceability by order-
lowness for prebx-free decidable machines by [1, Theorem 24], we also give some
characterizations of Schnorr triviality via order-lowness.

As a conclusion, Schnorr triviality is a robust notion.
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On the real Gray code and
polynomial-time approximability

Akitoshi Kawamura

A set S of real numbers is said to bgolynomial-time approximableif
there is a polynomial-time oracle Turing machine that, given a name of a
real number! and an input @°, tells whether! ! S correctly except for
those! in a set of measur¢’ 2' ". While this notion was debned by Ko [1]
using a specibc representation of real numbers, we point out that it is robust
under a certain class of equivalent representations. Among such good repre-
sentations is the one we debPne using the idea of the Gray code embedding [3],
which can be regarded as assigning to each real number a (discrete) tally deci-
sion problem with promise. This implies some new relations between several
conjectures about polynomial-time approximable sets and randomized com-
putation. In particular, we prove that every polynomial-time approximable
interval is polynomial-time recognizable (in the sense debned in [2]) if and
only if the discrete complexity clas8PP equalsP on tally promise problems.

Based on joint work with Ulysse Lechine.
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Online structures

KengMeng NG
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We give a survey of the foundations of online structure theory. This work has its
roots in the early work on efficientigomputable structures, particularly polynomial
time computable structures. We compare and contrast with the situation for computable

structures and show that online structures often behave in surprising ways.
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Two Propositions Between WWKL and WKL

Wei Wang
wwang.cn@gmail.com
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WKL stands for the formulation in second order arithmetic of Weak Koenig's
Lemma, which says that every infinite binary tree has an infinite path. It has an easy
measure theoretic corollary (WWKL, weak WKL) that no closed set (of Cantor space)
with positive measure is empty. Recently, from both computability and reverse
mathematics viewpoints, Chong, Li, Wang and Yang study a strengthened version of
WWAKL that every closed set with positive measure contains a perfect subset (i.e., a
closed set without isolatl points). Denote this proposition by P, and by P+ the even
stronger proposition that every closed set with positive measure contains a perfect
subset also with positive measure. Chong et al. prove that P+ follows from WKL.
Clearly, P+ implies P and P ings WWKL. So a natural question arises whether P/P+
are substantially different from WKL and WWKL. A latest joint research by Barmpalias,
Wang and Xia shows that indeed P and P+ do sit strictly between WKL and WWKL.

But it is still unknown whether P and-Rre inequivalent.
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Topological basis problem and P,y
Yinhe Peng!

!Chinese Academy of Sciences, China

Abstract

The basis problem is one of the most important and fundamental
problem in topology. In some cases, it is equivalent to the metrization
problem. A family of uncountable topological spaces is a basis of all un-
countable spaces if every uncountable space has a subspace in the family.
We first introduce the background and some progress of the basis problem.
Then we will analyze the basis problem in Pp.x extensions introduced by
Woodin.
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Characterization of quasi Solovay reduction via
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Toshio Suzuki
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Solovay reduction is a concept that compares complexity of two real numbers.
Unlike Turing reduction, Solovay reduction is defined by means of distance of
two reals. Its origin goes back to unpublished notes by Solovay [5] in 1970s.
The relationship between Solovay reduction and randomness is an interesting
subject even today. For example, Solovay degrees are studied in this context in
[3]. General exposition on Solovay reduction may be found in [1, Chapter 9] and
in [4, §3.2].

This talk is a collaboration with Masahiro Kumabe and Yuki Mizusawa. In
the talk by Mizusawa at CTFM 2018 [7] and in the talk by Suzuki at Sendai Logic
School 2018 [8], we introduced a reduction concept by relaxing requirements in
Solovay reduction. We called it pseudo Solovay reduction: Here, we call it quasi
Solovay reduction instead. We are going to characterize quasi Solovay reduction
by means of sequences.

Suppose that « and 8 are real numbers. « <g 8 (« is Solovay reducible to
B) if there exist a partial computable function f from Q to Q and a positive
natural number d of the following property. For any rational < S, f(z) {< «
and o — f(z) < d(f — x).

In the above, it is implicitly assumed that a — f(z) is a small positive real
number. Thus, for example, its square is less than the original. Therefore, roughly
speaking, an inequality (a— f(z))? < d(8—x) is easier to satisfy than a— f(z) <
d(8—1). Based on such an observation, we introduce the concept of quasi Solovay
reduction as follows.

a <45 f (ais quasi Solovay reducible to ) if there exist a partial computable
function f from Q to Q and positive natural numbers d, ¢ of the following prop-
erty. For any rational x < 3, f(z) < @ and (a — f(2))! < d(8 — z).

In the former talks [7,8], we discussed the relationship between Solovay re-
duction and Lipschitz continuous Weihrauch computable functions, and the re-
lationship between quasi Solovay reduction and Holder continuous Weihrauch
computable functions. For Weihrauch computable function, consult [6].

Incidentally, Solovay reduction has many equivalent assertions. A result of
Downey et al. [2] (see also [1, Lemma 9.1.7]) is as follows. Suppose that o and
are left-c.e. reals and that {r,} is a computable increasing sequence of rationals
that converges to 5. Then o <g (3 if and only if there is a computable increasing
sequence {p,} of rationals that converges to « and there is a positive constant
d such that for all n € N it holds that p, — pn—1 < d(rn, — Tn—1)-
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We show that for left-c.e. reals « and 3, the following are equivalent.

1. « is quasi Solovay reducible to 3.

2. There are computable increasing sequences {p, }, {r,} of rationals such that
Pn — «, p, — [, and there are positive constants d and ¢ such that for all
m € N and for all n < m it holds that (p, — pn)* < d(rm — rn)-

The direction of (2)=-(1) is given by taking limit of m — co. By carefully
examining our construction of Holder continuous function in the former talks,
we show the direction of (1)=-(2).
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There is no strong minimal pair

Yong Liu
liuyong0112@hotmail.com

Nanyang Technological University

A strong minimal pair in r.e. degrees is defined to be a pair of A and B such that
they are incomparable and for any non-recursive r.e. set W below A, B+W computes A.
Historically, this was a interesting problem. Slaman showed a weaker version of this,
that is, B+W computes a third set C instead of A. This is called Slaman-Triple nowadays.
Only recently, people showed that there is a strong minimal pair. However, we realized
that there is a problem in that paper. Then we turned the problem into a proof that there
is no strong minimal pair. In this talk, we will sketch the proof. This is joint work with

Mingzhong Cai, Yiqun Liu, Cheng Peng, Yue Yang.
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Combinatorial implication of computability theory

Lu Liu
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Most of newly arising computability theory (reverse math, algorithmic
randomness theory or even computable model theory) has close connection with
combinatorics, and in many cases, finite combinatorics. In this talk we show that a
relativized version of aaturally arised reverse math question is equivalent to a (purely)

combinatorial question.
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Permission and Obligation in Ceteris Paribus

Huimin Dong
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1 Motivation

This paper is motivated to formalize permission and obligation b®nt and neces-

sary conditions for being normatively bne [1, 6], governed by the concept caiteds
paribus What we propose aims at providing a general theory to illustrate the founda-
tions behind some deontic paradoxes in natural language, like the Lewis problem, the
Ross paradox, and the gentle murder problem [15, 16]. More further it also intends to
provide a new formal tool to solve the so-called the equilibrium selection problem in
game theory [13].

Two well-known families of deontic logics, deontic action logics (DAL) [5, 1] and
deontic preference logics (DPL) [20, 7], also follow the same principle for permis-
sion and obligation, but evaluate what is oughtmitted to do by dierent conceptual
criterions, the Right or the Good. These two approaches solve the infamous deontic
paradoxes, like the Lewis problem [15], the Ross paradox, and the gentle murder para-
dox [16], by developing dierent theoretical methodologies. The methods DAL usu-
ally emphasizes that terent complicate algebraic interpretations on actions can com-
bine with the Right by ideality [5, 1], but which cost a pay on the intuition of actions
and result very weak logics. On the other hand, DPL usually adopts the similarity-
based preference to debne obligation as what is the best given everything else being
equal [19, 20, 7]. Such a similarity-based method is natural amdsorich enough log-
ics. However, they are hard to get rid of the Ross paradox and the Lewis problem.

This paper proposes a plausible middle ground in between, which adopts the Right
as the conceptual standard, and takes the natural intuition of similarity for actions. Here
we understandeteris paribusn term of similarity. We follow two senses of it proposed
by Schurz (see [17]), the static one and the dynamic one, in order to describe the natures
of permission and obligation. The two meaningseferis paribusre later axiomatized
in logics, which retain rich principles of permission and obligation dsaent and
necessary conditions for being normatively right, and capture the above two characters
of ceteris paribusWe leave the detailed proofs to the full paper.

' The author is supported by the China Postdoctoral Science Foundation funded project [No.
2018M632494], the PIOTR research project [No. RO 45848, the MOE Project of Key Re-
search Institute of Humanities and Social Sciences in Universities [No. 17JJD720008], the Na-
tional Social Science Fund of China [No. 17ZDA026], and the Fundamental Research Funds
for the Central Universities of China. The author thanks Johan van Benthem, Fan Jie, Olivier
Roy, Patrick Blackburn for the insightful comments and inspirations. The author also thanks
for the reviewers of AWPL 2018 and NCML 2018 and the participatants of NCL 2018, ISLU
2018, and the PIOTR workshop 2018 for the helpful comments.
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2 Formal Theory

Permission is what does stay to be normally bne, underlying on Oeverything else are
equal.O The statieteris paribusn this sense is captured by the concept of likelihood

(or similarity), followed after the accounts developed in [14, 10, 19]. So permission
is debned in the style of free choice permission [18]. The case thattieh ceteris
paribus#0Q is interpreted as Oin the most likely states satisfyi#gs the case.O Obli-
gation is standard [16]. But permission is based on the noti@etefris paribuswhich

is not a dual of obligation as in standard deontic logic [11].

Debpnition 1 (Language).The set. of well-formed formulas of norms are debned as
follows:

"c=p|t A PO #
where p" Prop is an element of the (countable) set of atomic propositions.

We readP" as Oit is permitted that) andD" that Oit is obligated th&tO The formula
"1 #isinterpreted asts at least more likely thahO (see [10]). The formufal #!
#! " isdenoted a5 $b #which indicated that and# is equally likely. Following [19],

we debned" := A" | #, and so its duaE" := AAA".
Debnition 2 (Deontic Models).A deontic model M is a tupl®V, R, % V&where:

b W is a non-empty bnite set of states;

DR' W( W is serial;

D %is a similarity relation® on W( W s.t.%is rel3exive, transitive, and connected;
Db V:Prop) &W)isa valuation function.

Rwumeans that from staie stateu is normatively bne. We read%sas Q is at least

as similar or likely tosO [9]. We can see that a similarity relatittis a partial well-
order. With the Pnite domai we can make sure that a maximal element exists in it
(see [10]). We debne the strict orderas:u < vi" u %vandv! u. We then debne
maximality by using the similarity relation: mafx) = {v" X | *u" Xs.t.u %V}
Moreover, we denotS[w] = {u | Swyd whereS " {R, %} and|['||= {w | M,w E "}.
The truth conditions for permission and obligation are debned as follows:

M,w™ P" 0" maxd|l'|D) " RIw]
M,w" O" i" Rw] "] "l

The similarity modality! is the%.. modality well discussed in [19] and further devel-
oped in [9]:

M,w™ "1 #i" *u" W+v" Wst. MuE", MVE# & u%yv)
This implies thatA is a universal modality anH is an existential modality:

MwE A" i" *u" WstMufE"
MwE E" i" +u" WstMufE"

Lvis at least as similar asis whenu %v, andv is strictly more similar tham whenu < v [9].
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Permission and Obligation in Ceteris Paribus 3

We then introducé ("/# ), read as Off then,ceteris paribus#,0 into the language.
The formula# (- /" ) can be simplibed a" , and its dua" = A# A". The abbrevi-
ation#" can be read as Oitdsteris paribughat" . The formula# ("/# ) ! # #/" ) is
denoted a# (" | #). The modality# is interpreted by maximality as follows:

M,w ™ # (R T maxed][" D " I #|l
This condition can be used to by similarity [4, 21]:
MwE#(CH# )" *x[M,xE" ,+ u. x(MJuE" &*s. u(M,sg") #))
Obvious it results a reduction of the statieteris paribusy similarity relation:
#CH)L AT)A (L (TAH)]

The second sense oéteris paribusOeverything else being right,0 is that it cannot
be changedby other things interfere it. After considering all interferences, namely ex-
ceptions, the meaning of@eteris paribussentence is settled down. Now we develop
a dynamic logic for theceteris paribussentences. First we need to have a method to
clarify the scope oéxceptionin aceteris paribusentence. We brst debPbg" ) as the
set of all atomic propositions occurring'Inas follows:

U(P) = P}
UC ! #)=U(")0U®)
UA) = U()
U(P") = UC)
U©E")=U()

U@ ("#)) = U(") 0 U#)

Given a Pnite set of formulae, we dePn¥(' ) as the set of all atomic propositions
occurring in' ,i.e.U(' ) =" ... U("). After we can debPn€(") as the scale about the
disturbing factors regardint, represented by all atomic propositions occurring ias
follows: C(") = {{xp| p" U(")} | either + p= por = p = Ap}. We then debPn€(' )

the scope of as follows:C(" ) = {{xp| p" U( )} | either £ p = por = p = Ap}.
Observe tha€(' ) exhausts all possible exceptions regardingvhile each exception

in C(' ) is mutually exclusive to each other. After clarifying the scope of exceptions or
interferences, we introduce the exclusive models to illustrate the update of exception.

DePnition 3 (Exclusive Models).An exclusive model is a tuple$C, 1&debned as
follows:

bC=C()

b 1' C( CisrelRexive, transitive, and connected.

We usec 2 dto denotec 1 d andd 1 c. Because is bnite,C(' ) should be Pnite as
well. This leads to that is conversely well-founde#l As the similarity can ‘aect nor-
mality and the normative notions in the update, we understdnd as OThe exception
cis morenormatively salienthan the exceptiod.O Notice tha3=14 2.

2 It mean thatl is not an inbnite right branching order [8].

28



4 H. Dong

Debnition 4 (Updated Models).Given M= $N,R, % V&andC = $C,1& We debne
the updated model M C' = $\, RP, 96, Vb&as follows:

D WP = {(u,c) | M,u E cwherec' C}; 3

D (u,c) %6 (v,d) i! eitherc3 d or (c2 d but u%v);
B (u,0)R%(v,d)i! uRvanddl d;*

P (u,0)" VE(p)i! u” V(p).

The truth condition of -scope updated is denoted jasa ||. Notice that if there are
c,d" Cs.t. M,w F candM,w [ d, then it must be the case thaandd are the same
exception inC. We call this phenomenoexception preservingifter the update, the
updated similarity?® in the new model is conversely well-founded. This observation
indicates that permission and normality are still well-debPned in the updated model. The
updated order is generated by the so-caléedcographic upgradenethodology [20],
which here is presented by together a similarity over exceptions with a similarity over
states. Moreover, becaugen an exclusive model is ref3exive, it implies that it is also
serial. It then results tha® is serial in the updated model. Note that what was norma-
tively Pne can be cancelled after update, if it was not normatively salient enough.

The dynamic sentenck & is added up into the language. The duabof is[' ]",
namelyA$ &A . We readd & as Oltis the case tHatProvisos . Its truth condition
is debPned as:

MWE$ & i" +(w,c)" WesttM5C ,(w,0) "

Observe that &has the same truth condition &4 foes, by the so-called exception-
preserving regarding. As thatC(' ) exhausts all possible consistent exceptions regard-
ing' ,there mustbe a" C(' ) s.t.cis satisbed at. Together with the exception pre-
serving property, it is not hard to see that hnd$ &have the same truth conditions. In
particular, we have the following equivalendd:5 C',(w,c) F" i" M,\wEc!$' &.

The axiomatization of permission, obligation, areteris paribugs structured into
two parts. The static part involves axioms and rules in a standard manner. The binary
modality! follows the axioms and rules suggested in [10], whiléollows those in [4].

The O-modality is the D-modality in modal logic [3], but tHemodality is not the dual
of O anymore. RatheR-modality satispes the axioms presented in Table 1.

Theorem 1. The system in Table 1 is (weakly) sound and complete.

In our paper the compleneteness of the static logic (in Table 1) is proven by Pnite canon-
ical model followed after [22]. The dynamic part (in Table 2) follows the methodology
of reduction in [2, 20] for dynamiceteris paribusThe dynamic operator illustrates the
complex update apparatus in the syntax level, bridging the notion of exception with the
staticceteris paribus

Theorem 2. The system in Table 2 is (weakly) sound and complete.

3 Here we simplifyM,w spctpasM,wkc
4 A similar suggestion please refer to [23].
5 Provisosmeans Oproviding some disturbing factors are absent.O
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- Tautologies
- The binary modality satisbes the axioms and rules suggested in [10]
- The binary modality# satisbes the axioms and rules suggested in [4]
- Ois a D-modality
-0ic:0") E"
- PtF: P#
-RFCP:P" ! P#) P("7#)
-FCP:P" ! #(#/")) P#
-OWP:O" ! P#) ##/I")
Table 1. The logicN for Permission Obligation in StatiCeteris Paribus
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where' £ :=c) [ ]A"

Table 2. Reduction Axioms for DynamiCeteris Paribus

3 Conclusion

This paper has argued that permission and obligation should be viewed a ttiersu

and necessary conditions for the Right, but should be governed under the progiple

teris paribus This view point turns to a general formal theory of a (weakly) sound and
complete dynamic logic for permission and obligation, which can answer the Lewis
problem, the gentle murder puzzle, the Ross paradox, and the equilibrium selection
problem. This theory is theoretically rich, because it includes a great number of interac-
tions between permission, obligation, ateteris paribuslt is also expressive enough

such that a fragment of DPL is one of its special cases, specibed that the bestness is a
particular case of the rightness. All details are left in the full paper.

In the future we want to discuss the issue of whether the similarity relation is con-
nected. Intuitively a similarity is more common to be non-comparable [12]. Connected-
ness captures an important kind of norm called overall norms, which satisfy the standard
consistency principle (axiom D). Non-connectedness capturepriima facienorms
more properly. A natural question rises up: What about the consistency principle for the
non-connectegrima facienorms? We leave it open for the future research.
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An introduction to infinite time decidable equivalence
relation theory

Cheng Peng
mynameispch@gmail.com
Nankai University

Infinite time Turing machines were first studied and introduced by Hamkins
Kidder and Lewis. With infinite time Turing machines, we have infinitary analogues of
classical concepts. An infinite time analogue of Borel equivalence relation theory is the
theory of equivalence relations that are decidable by an infinite time Tmancgine,

i.e., the Borel reductions are replaced by the infinite time computable reducibility. This
approach retains much of the Borel analysis and results, with the added bonus that it
becomes sensible to study some special equivalence relations whqsdexaynis
beyond Borel.

In this talk, we will introduce the basic idea of infinite time decidable equivalence

relations and some interesting questions in this area.
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Dcpo models of Choquet complete and Baire spaces
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Nanyang Technological University, 1 Nanyang Walk 637616, Singapore

Abstract

A model of a T; topological spaceX is a posetP such that the set of maximal
points of P with the relative Scott topology is homeomorphic to X . In this paper, we
prove that (i) a T, space is Baire if and only if it has a dcpo model whose Scott space
is Baire; (ii) a T, space is Choquet complete i! it has a dcpo model whose Scott space
is Choquet complete; (iii) a T; space has a quasicontinuous dcpo model i! it has a
continuous dcpo model.
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Abstract

The problem of determining whether a Boolean formula is unsatisbable is called
Boolean unsatisbability (UNSAT) problem. Its opposite the Boolean satisbabili-
ty (SAT) problem is famous in mathematical logic and computing theory, which
is one of the brst proven NP-complete problems [3,7]. SAT is widely studied
because of its well known signibcance on both of theory and practice [6, 1].

Based on the DPLL method [5, 4], there were developed a large number of
high-performance algorithms for SAT: local search algorithms, stochastic algo-
rithms, conBict-driven clause learning algorithms, and so on. Most DPLL-based
methods can be developed to study UNSAT. However, contrasting the large
number of studies about SAT, there were a few direct work [2] about UNSAT.
In practice, it was ever for a long time that there was no local search algorith-
m for UNSAT before GUNSAT [2] was proposed. Therefore it [6] was eagerly
concernedwhether a procedure dramatically dilerent from DPLL can be found
for handing UNSAT . This study presents a linear algebra formulation (LAF) to
address this issue elciently.

The basic idea of LAF for UNSAT is in what follows. It brst converts the
UNSAT problem into a 1-in-3-UNSAT problem. A 3-CNF formula is called 1-in-
3 satisbable if there is a truth assignment to its Boolean variables such that each
clause has exactly one true literal, otherwise 1-in-3 unsatispable. The 1-in-3-SAT
problem is to determine whether a 3-CNF formula is 1-in-3 satispable, which is
NP -complete [8]. Similarly, the 1-in-3-UNSAT problem is to determine whether
a 3-CNF formula is 1-in-3 unsatisbable. Then, the 1-in-3-UNSAT problem is
converted into a Boolean solution (BoS) problem of the corresponding linear
system, where a BoS is a solution composed merely of 0 and 1. For the result-
ed linear system, we develop an iterated linear algebraic method to elciently
test whether it has any BoS. Through this approach, we obtain some sulcient
conditions for UNSAT. Our experiments result Table. 1 showed that the new
method works for many Boolean unsatisbable instances. In the table, ¥ and
# C denote the numbers of Boolean varibles and clasues in each instance in the
# T many randomly generated 3-CNF formulaes. Among these # 3-CNF for-
mulaes, the LAF algorithm can conbrm that, #1-in-3-SAT many of them are

34



Table 1. Implementation of LAF Algorithm

#V #C #T  |[#Unk |# 1-in-3-SAT  |# 1-in-3-UNSAT
50 41 100 12 9 79
50 46 100 0 0 100
70 58 100 8 0 92
70 66 100 0 1 99
90 74 100 11 0 89
90 82 100 0 0 100
130 109 100 15 0 85
130 118 100 0 0 100
150 125 100 36 0 64
150 136 100 0 0 100

1-in-3-SAT, #1-in-3-UNSAT many of them are 1-in-3-UNSAT, and #Unk many
of them are remained no answer as to their 1-in-3-SAT.

Through LAF, this study gave an alrmative answer to the question in the

end of Challenge 1 in [6]. In fact, we developed two polynomial time algorithms
for unsatispability testing based upon LAF. However, we must concede that this
method should be incomplete; otherwise, it will imply P=co-NP. Nevertheless,
LAF has been employed to successfully prove 1-in-3-UNSAT for many nontrivial
cases as showed in the experiments.
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Ramsey property and infinite game in
second-order arithmetic

YASUHIKO OMATA

Mathematical Institute, Tohoku University

ABSTRACT

The Ramsey property of sets of reals have been studied in descriptive set
theory. These Ramsey properties also have been investigated in second-order
arithmetic. In this talk, we brstly review classical results on the Ramsey prop-
erties.
On the other hand, Tanaka [1] showed that, over ZFC, the determinacy of
certain inbnite game over reals implies the Ramsey property. Our goal is to
formalize this argument to connect, within second-order arithmetic, the Ramsey
properties with the determinacies of inPnite games, which are independent of
ZFC.
This is an ongoing work, so we will give some motivations and current progress
on this work.
This is a joint work with Kazuyuki Tanaka.
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The eigen-distribution for multi-branching trees on
independent distributions
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Abstract

Game tree is an important model of computation in the area of theoretical
computer science. We are interested in the query complexity on game trees
with respected to dilerent kinds of distributions and classes of deterministic
algorithms. Liu and Tanaka (2007a, 2007b) characterized the Eigen-distributions
that achieve the distributional complexity, and they asserted that if the Eigen
distribution for any uniform binary AND-OR tree is achieved by an independent
distribution (ID), then it is an independent and identical distribution (1ID).
However, (2007) does not include a proof of the assertion. Suzuki and Niida
(2015) gave a proof for the case where the probability of the root is constrained
for uniform binary trees and showed Liu-TanakaOs assertion. Subsequent to
Suzuki and NiidaOs prominent work on uniform binary trees, Pengt al. (2017)
Pnally proved tLiu-TanakaOs assertion for balanced multi-branching AND-OR
trees with the condition that the root can not be 0 or 1. In this talk, we show
that ID is an IID when the distributional complexity holds without considering

the constraints on probability.
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Abstract TBA
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Airport / Train Station to the Conference Center

1 Wuhan Tianhe International Airport Conference Center 43.7km
Subway Lint

Route A: By Subway Line 2Wuhan Tianhe International Airport
Jiedaokou Station (Exit B), Walk 770meters
Time: 1hour and 39minutes Cost:

To Optics Valley Squar

Route B: By taxi
Time: 49 minutes Cost10

2 Wuhan High-speed Railway Station = Conference Center 17.5km

Route A: By Subway Line 4 and Line #uhan Railway Station 2222y tine 4

SubwayLine 2

To Huangjinkou Station

p» Jiedaokou
To Optics Valley Square

Zhongnan RoadTransferStation)
station (Exit B), Walk 770meters

Time: 53 minutes Cost:
Route B: By taxi
Time: 30 minutes Coss7

3 Hankou Railway Station Conference Center 18.6km

Route A: By Subway Line Hankou Railway Station——-owayLine2

To Optics Valley Square
Jiedaokou station (Exit B), Walk 770 meters

Time: 50 minutes Cost:
Route B: By taxi
Time: 32 minutes Cosh4

4 Wuchang Railway Station = Conference Center 6.1km
Subway Line 4

Route A: By Subway Line 4 and Line 2/uchang Railway Station

. Rail :
Subway Line 2 To Wuhan Railway Station

Hongshan SquardgTransfer Station)

To Optics Valley Square
Jiedaokou stationExit B), Walk 770meters

Time: 34minutes Cosk
Route B: By taxi
Time: 17 minutes Cost4
5 Jiedaokou stationExit B) Conference Center: 770 meters by

walking
Remarks:For Subway Line 2, the station Optics Valley Square Station is also called

as Guanggu Square Station
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Conference Venue

Mafangshan campus of Wuhan University of Technology

122 Luoshi Road¥30000Wuhan, HubeiChina.

Meeting Room
Public LectureConference Centré&Room301

Conference talk: Conference CentrRoom104

ConferenceHomepage

www.ctfm2019.com
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