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    Welcome to CTFM2019, the 9th International Conference on Computability 

Theory and Foundations of Mathematics.  

    CTFM 2019 is the ninth conference of the CTFM conference series. The aim of 

this conference is to provide participants with the opportunity to exchange ideas, 

information and experiences on active and emerging topics in logic, including but not 

limited to: Computability Theory, Reverse Mathematics, Nonstandard Analysis, Proof 

Theory, Set Theory, Philosophy of Mathematics, Constructive Mathematics, Theory of 

Randomness and Computational Complexity Theory.  

This conference was supported by Wuhan University of Technology and 

National Natural Science Foundation of China, No. 11701438. 
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Public Lecture



 
 

Computability from the foundational point of view 
 

Chi Tat Chong 

National Univesity of Singapore 

chongct@nus.edu.sg 

 

 

The notion of computation goes back several thousand years. Historically 

mathematics began with the need for performing computation, and the solution of 

mathematical problems was based on the algorithmic approach. The evolution to 

mathematical abstraction is a relatively recent development. This talk will discuss the 

role Òcomputability" plays in mathematical investigations, and problems as well as 

issues it raises in the foundations of mathematics. 
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Invited Talks



Simple betting strategies in warped casinos

George Barmpalias1!

1Chinese Academy of Sciences, Beijing, China.

Abstract

Suppose that you know the casino roulette is rigged and there is an
imbalance of red/black outcomes, at least in the limit. Then there is a
strategy which only bets on red or only bets on black, which guarantees
you unbounded proÞt. More generally, suppose that you have the restric-
tion that you cannot bet the dollars you earn by betting on red, to bet
on black and vice-versa. In the same casino there is a successful strategy
of this kind, which does not depend on where the bias is (red or black) or
even the degree of the bias (ie how far from 1/2 each outcome frequency
can get in the limit).

Sometimes casinos are rigged in more subtle ways, while satisfying all
commonly used laws of large numbers like the relative frequency limit of
each outcome tending to 1/2. Then are there simple winning strategies?
We study this question from an algorithmic perspective, which is a natural
approach since it is reasonable to expect that a strategy is programmable
in a computer. We show that in the case of programmable strategies the
answer is positive while in the case of countable mixtures of programmable
strategies the answer is negative.

This is joint work with Fang Nan and Andy Lewis-Pye.

! Barmpalias was supported by the 1000 Talents Program for Young Scholars from the
Chinese Government No. D1101130, NSFC grant No. 11750110425 and Grant No. ISCAS-
2015-07 from the Institute of Software.
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Forcing in bounded arithmetic for small
complexity classes

Satoru Kuroda

Department of Liberal Arts, Gunma Prefectural WomenÕs University

Forcing is one of the most powerful tools in mathematical logic. Besides many
independence results in set theory, it also plays important roles in other branches
of mathematical logic such as recursion theory.

It is also expected that forcing proves independence results in bounded arith-
metic. The Þrst application of forcing in bounded arithmetic was given by Paris
and Wilkie [4] who proved that the theory IE 1(R) does not prove that R is a
bijection from n + 1 to n.

Using nonstandard construction and a version of switching lemma, Ajtai [1]
proved the celebrated result that I! 0(R) does not prove the pigeonhole principle
for R.

Somewhat di!erent approach was made by Kraj«õÿcek. He asked for construc-
tions of nonstandard models of weak theories in which complexity theoretical
properties such asP != NP holds. In this line he gave two forcing construction
of weak theories, namely

Ð Any nonstandard countable model ofPV in which NP !" P can be extended
to a model of the same theory in whichNP !" coNP [3].

Ð Any nonstandard countable model ofV 1 in which " does not have extended
Frege proofs can be extended to a model of the same theory in whichÂ" is
unsatisÞable [2].

The third wave of forcing in bounded arithmetic was brought by two papers of
Takeuti and Yasumoto [5], [6]. They established a neat theory of Boolean valued
models constructed from nonstandard models of bounded arithmetic. The recipe
for constructing Takeuti-Yasumoto generic extension is as follows:

1. Let (M 0, M ) be a countable nonstandard model of some weak system.
2. DeÞne a Boolean algebraB which represents some complexity classC.
3. DeÞne an idealI " B which represents a property that we want to rule out

from the generic extensions.
4. Then genericG " B over I deÞnes a generic extension forC.

Although their approach contains many useful techniques, they did not present
any construction of generic models with particular properties.

In this talk we will give a reÞnement of Takeuti-Yasumoto type forcing con-
struction. Unlike Takeuti-YasumotoÕs approach, we start with any countable
nonstandard model of bounded arithmetic. Takeuti-Yasumoto type generic mod-
els are constructed a Boolean algebra which represents a given complexity class.
Namely the following Boolean algebras are constructed:

3



Ð BNC 1 which consists of Boolean formulas,
Ð BL which consists of branching programs and
Ð BNL which consists of Boolean formulas with transitive closure connectives.

In the following theorems we assume that (M 0.M ) is not closed under expo-
nentiation. Then it is proved that generic extensions constructed from each of
the above Boolean algebras is a model of the corresponding theory.

Theorem 1. Let C be either NC 1, L or NL . If G " BC is a M -generic then
(M 0, M [G]) |= V C.

It turns out that generic extensions constructed as above are related to com-
putational complexity and the size of propositional proofs.

Theorem 2. Let C be either NC 1, L or NL . If (M 0, M ) |= P " C then
(M 0, M [G]) |= VP for any M -generic G " BC.

Then converse also holds:

Theorem 3. Let C be eitherNC 1, L or NL and (M 0, M ) |= V C. If (M 0, M ) |=
P !" C then (M 0, M [G]) |= VP for some M -generic G " BC.

Similar connections hold for propositional provability in the ground model
and generic extensions.

Theorem 4. Let (M 0, M ) |= V 1 and suppose that the following conditions hold
in (M 0, M ):

Ð G0 p-simulates G!
1.

Ð Any # B
0 theorem of V 1 has polynomial sizeG!

1-proofs.

Then (M 0, M [G]) |= VP for any M -generic G " BNC 1 .

It is not known whether the converse holds. Nevertheless, the following holds.

Theorem 5. Let (M 0, M ) |= V 1 and suppose that in(M 0, M ) there is no G0-
proof of the propositional statement that any circuit can be evaluated. Then
(M 0, M [G]) !|= VP for some M -generic G " BNC 1 .

References

1. M. Ajtai, The complexity of the pigeonhole principle. Proc. of the 29th Annual
Symposium on the Foundations of Computer Science, (1998), pp.346Ð355.

2. J. Kraj«õÿcek, On Frege and Extended Frege Proof Systems. in: Feasible Mathematics
II, Birkh¬auser, (1995), pp.284Ð319.

3. J. Kraj«õÿcek, Extensions of models of P V . in: Logic Colloquium Õ95. Eds.
J.A.Makowsky and E.V.Ravve, ASL/Springer Series Lecture Notes in Logic,
Vol.11, (1998), pp.104Ð114.

4. . J. B. Paris and A. J. Wilkie, Counting problems in bounded arithmetic. in:
Methods in Mathematical Logic, 1130 (1985), pp.317Ð340.

5. G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic. in: G¬odel Õ96,
Lecture Notes in Logic, vol.6, (1996), pp.120Ð138.

6. G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic II. Journal of Sym-
bolic Logic, vol.63(3), (1998), pp.860Ð868.
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Weihrauch degrees of numerical problems
Ñcomparison with arithmeticÑ

Keita Yokoyama!

Japan Advanced Institute of Science and Technology
y-keita@jaist.ac.jp

The Weihracuch degree of a binary relation on Baire space measures the
power of uniform computation of a problem deÞned on Baire space. In the recent
studies of Weihrauch degrees, it is seen that its structure resembles the structure
of second-order arithmetic in the sense of reverse mathematics.

In the study of reverse mathematics, it is important to isolate the Þrst-order
consequences of essential axioms/principles. Then, can we do a similar analysis
for Weihrauch degrees? In this talk, we consider a hierarchy of Weihrauch degrees
of numerical problems inspired by Kirby-Paris hierarchy of Þrst-order arithmetic.
Then, we see that the class of numerical problems which are reducible to a major
Weihrauch degree can often be captured by a numerical problem in the above
hierarchy. By this way, one may classify Weihrauch degrees by their ÒÞrst-orderÓ
strength.

This is a joint work with Damir Dzhafarov and Reed Solomon.

! This work is partially supported by JSPS KAKENHI (grant numbers 16K17640 and
15H03634) and JSPS Core-to-Core Program (A. Advanced Research Networks).
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Effectivity and Reducibility with Ordinal Turing Machines  
 
 

Merlin Carl 

merlin.carl@uni-konstanz.de 

Europa-UniversitŠt Flensburg 

 

    By its reliance on Turing computability, the classical theory of effectivity, along 

with effective reducibility and Weihrauch reducibility, is only applicable to objects that 

are either countable or can be encoded by countable objects. We propose a notion of 

effectivity based on Koepke's Ordinal Turing Machines (OTMs) that applies to arbitrary 

set-theoretical $\Pi_{2}$-statements, along with according variants of effective 

reducibility and Weihrauch reducibility. As a sample application, we compare various 

choice principles with respect to effectivity. We also propose a generalization to set-

theoretical formulas of arbitrary quantifier complexity. 
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IDEAL -VERSIONS OF BOLZANO-WEIERSTRASS 

PROPERTY 

 

JIAKUI YU AND SHUGUO ZHANG 

College of Mathematics, Sichuan University 

 

                            Abstract. 
    Let I, J be ideals on the set of natural numbers, we say that a space X has 
(I;J )-BW property if every sequence in X contains a J -converging subsequence 
indexed by an I-positive set. This is a common generalization of BW-like properties 
types. We obtain some characterizations of (I;J )-BW property. 
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On equivalence relations generated by Cauchy
sequences in countable metric spaces

Longyun Ding1!

1School of mathematical sciences, Nankai University, Tianjin 300071, China

Abstract

Let X be the set of all metrics on ! , and let Xcpt be the set of all
metrics r on ! that the completion of (!, r ) is compact. We deÞne Cauchy
sequence equivalence relationEcs on X as: rE css i! the set of Cauchy
sequences in(!, r ) is same as in(!, s ). We also denote Ecsc = Ecs ! Xcpt .

We show that Ecs is a ! 1
1-complete equivalence relation, while Ecsc is

a ! 0
3 equivalence relation. We also show that Ecsc is Borel bireducible to

an orbit equivalence relation. Furthermore, we tried to Þnd out the Borel
reducibility between Ecsc and some benchmark equivalence relations. For
instance, we show that = + and R! /c 0 are Borel reducible to Ecsc , and E1

is not.
Restrictions of Ecsc on some special subsets ofXcpt are also considered.
This is a joint work with Kai Gu.

! dinglongyun@gmail.com
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Pmax-style extension for basis problem of uncountable 
linear order 

 

Liuzhen Wu 

lzwu@math.ac.cn 

Chinese Academy of Sciences, China 

 

    Moore proves that under PFA, there is a five element basis for uncountable linear 

order. In a joint work with Yinhe Peng, we study the possible size of a basis for 

uncountable linear order in Pmax-style extension. 
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Is an alternative foundation of set theory possible? 
 

Ruizhi Yang 

Fudan University 

 

 

    Hamkins and Kikuchi (2016) showed the set-theoretic mereology has a complete 

decidable theory, hence cannot server as a foundation theory of mathematics. We 

extend their program to investigate more reducts of the full structrure of the set-

theoretic universe. We find that many natural reducts are either completely 

axiomatizable or carrying the full information of the unvierse. In particular, we showed 

the structure of arbitrary union has a complete decidable theory. This is a joint work 

with Joel. D. Hamkins. 
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Working with computable Lipschitz
reducibility above (uniformly) non- low2 c.e.

degrees

Yun Fan a,1

aDepartment of Mathematics, Southeast University, Nanjing, China

Abstract

Computable Lipschitz reducibility is a strengthening of weak truth table
reducibility, based on computations where the use on the oracle at argument
n is bounded byn + c for some constantc. Recall that a degreed is non-
low2 if for any total function f ! T " ! there is a total function computable
in d which is not dominated by f . Non-low2-ness is an important notion
in Turing degrees. After introducing a uniform version of non-low2-ness, if
a c.e. Turing degreed is uniformly non-low2, then for any non-computable
! 0

2 real there is a c.e. real ind such that both of them have no common
upper bound in c.e. reals under cl-reducibility. In this talk, we show some
improvement on the interplay between (uniformly) non-low2-degrees and
cl-reducibility.

Email address: fanyun@seu.edu.cn (Yun Fan )
Preprint submitted to Elsevier March 5, 2019
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Models of Computations

ÑInformation Systems and Domains (Abstract)

Luoshan Xu
Dept. of Mathematics, Yangzhou University, Yangzhou 225002, P. R. China

Computations can be viewed as both functions and process.
In order to assign meanings to programs written in high-level programming languages, Dana

Scott invented continuous lattices [6] which is now grown up as Domain Theory [1, 2]. From state
parts of computations, domains give computations models of denotational semantics.

In theoretical computer science, order structures arise naturally. The more information some
state contains, the larger it is in the information ordering. It is a common sense that the increasing
sequence of information should give more accurate states (of computation). To guarantee the
existence of convergent states, one considers often so called continuous dcpos (i.e., domains).

From behaviour part of a computation, Dana Scott in his seminal paper [7], introduced informa-
tion systems as a logic-oriented approach to operational/denotational semantics of computations.

Traditional continuities and the Scott topology
Intuitively, we say that state x approximates statey if any computation of y yields the informa-

tion of x at some Þnite stage. One of the important insights of the theory of Òcontinuous posetsÓ
that has emerged in the last Þfty years is the following mathematical formalization.

DeÞnition 1. Let P be a poset,x, y ! P. We say that x approximates y, written x " y, if
whenever D is directed with supD ! y, then x " d for some d ! D . We use ##x to denote the
set { a ! P : a " x} . If for every element x ! P, the set ##x := { a ! P : a " x} is directed and
sup##x = x, then P is called a continuous poset. A continuous posetwhich is also a dcpo (resp.,
bounded complete dcpo, complete lattice) is called acontinuous domain or brießy a domain (resp.,
bc-domain, continuous lattice).

DeÞnition 2. Let P be a poset andA $ P. If #A = A and, for any directed set D $ A,
supD ! A if sup D exists, then A is called Scott-closed. The complements of the Scott-closed sets
form a topology, called the Scott topology, denoted ! (P).

Theorem 3. [4, 9] A poset is continuous i! the lattice of its Scott Closed sets is a CD-lattice.

Continuous Information Systems

DeÞnition 4. [5, 8] An information structure S = ( A, Con, %) is called acontinuous information
system(in short, C-inf) if the following six conditions hold for any sets X, Y ! Con, a ! A and

12



nonempty Þnite subsetF $ A:
(1) { a} ! Con,
(2) X %a & X ' { a} ! Con,
(3) (Y ( X ) X %a) & Y %a,
(4) X %Y %a & X %a,
(5) X %a & (* Z ! Con)(X %Z ) Z %a),
(6) X %F & (* Z ! Con)(Z ( F ) X %Z ).

If in addition, S satisÞes
(S5) (+a ! X ! Con)(X %a),
then S is called analgebraic information system(in short, A-inf).

DeÞnition 5. [3, 5] Let S = ( A, Con, %) be an information structure. A subset x $ A is a state
of S if the following three conditions hold:
(1) (Þnite consistency) (+F $ Þn x)(* Y ! Con)(F $ Y ) Y $ x),
(2) (%closedness) (+X ! Con)(+a ! A)(X $ x ) X %a & a ! x),
(3) (derivability) ( +a ! x)(* X ! Con)(X $ x ) X %a).

With respect to the order of set inclusion $ , the states of an information structure S form a
partially ordered set, denoted by |S|.

Proposition 6. [3, 5] Let S = ( A, Con, %) be an information structure and { xi } (i ! I ) a directed
set of |S|. Then , |S| { xi : i ! I } = ' i ! I xi , and thus |S| is a dcpo. If S = ( A, Con, %) is a C-inf
(resp., A-inf ), then |S| is a domain (resp., an algebraic domain).

DeÞnition 7. [8] For a domain D with a basis B , deÞneS(D, B )=( B , ConD , %D ) such that
(1) X ! ConD - X $ Þn B and , X exists in D ;
(2) +X ! ConD , +b ! B, X %D b - b " , X .
Then S(D, B ) is called the information structure induced by domain D with basis B .

Theorem 8. [8] (1) Let D be a domain with a basisB . Then the information structure S(D, B ) =
(B , ConD , %D ) is a C-inf. Furthermore, |S(D, B )| .= D . Particularly, |S(D, D )| .= D .

DeÞnition 9. ( [8]) Let S = ( A, Con, %) be an information structure. DeÞnewS =( A, Con, |=)
such that for all a ! A and X ! Con, X |= a - X ' { a} ! Con and (+b ! A, { a} % b & X %b).
Then wS = ( A, Con, |=) is called the information structure induced by S.

Theorem 10. [8] If wS = ( A, Con, |=) induced by a C-inf S is a C-inf, then wS is an A-inf, in
this case, we will callS a weak algebraic information system, brießy, a wA-inf.

Categorical Aspects

DeÞnition 11. [5, 8] An approximable mapping f : (A, ConA , %A ) / (B, ConB , %B ) between
C-infs (A, ConA , %A ) and (B, ConB , %B ) is a relation f $ ConA 0 B satisfying the following Þve
conditions:
(1) (( XfF ) ) 1 2= F $ Þn B ) & (* Z ! ConB )(F $ Z ) XfZ ),
(2) (XfY ) Y %B b) & Xfb ,

13



(3) (X %A X " ) X "fb) & Xfb ,
(4) (X $ X " ! ConA ) Xfb ) & X "fb,
(5) (Xfb ) & (* X " ! ConA )(* Y ! ConB )(X %A X " ) X "fY ) Y %B b),
where XfY means that Xfc for all c ! Y .

The composition g3f $ ConA 0 C of relations f $ ConA 0 B and g $ ConB 0 C is deÞned by

X (g 3 f )c - (* Y ! ConB )(XfY ) Y gc),

for all X ! ConA and c ! C.

Let CINF (resp., AINF , wAINF ) be the category of C-infs (resp., A-infs, wA-infs) and
approximable mappings.

Let DOM (resp., ADOM ) be the category of domains (resp., algebraic domains) and Scott
continuous functions.

Theorem 12. [5] CategoriesCINF and wAINF are equivalent to categoryDOM , and category
AINF is equivalent to categoryADOM .
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The Brouwer Invariance Theorems in Reverse
Mathematics !

Takayuki Kihara

Graduate School of Informatics, Nagoya University, Nagoya, 464-0814 Japan
kihara@i.nagoya-u.ac.jp

http://www.math.mi.i.nagoya-u.ac.jp/÷kihara

In his book [1], John Stillwell stated Þnding the exact strength of the Brouwer
invariance theorems as Òone of the most interesting open problems in reverse
mathematics.Ó In this talk, we solve this problem by showing that some forms
of the Brouwer invariance theorems are equivalent to weak K¬onigÕs lemma over
the base systemRCA0.

Keywords: Reverse mathematicsáThe invariance of dimension theoremáThe
invariance of domain theorem.
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Schnorr triviality via decidable machines

Kenshi Miyabe

Department of Mathematics, Meiji University, Kanagawa, Japan
research@kenshi.miyabe.name

http://kenshi.miyabe.name/wordpress

1 K -triviality and lowness

The research relating K -trivial reals has been a big project in the theory of
algorithmic randomness. A realA ! 2! is called K -trivial if

K (A ! n) " K (n) + O(1),

whereK is the preÞx-free Kolmogorov complexity. In other words, the complex-
ities of the initial segments of A are minimal up to a constant.

The class ofK -trivial reals have many characterizations, especially by low-
ness. One of these is as follows. A realA ! 2! is called low for K if K (n) "
K A (n)+ O(1). In other words, A cannot compress more than in the unrelativized
case up to a constant. It turned out that a real A is K -trivial if and only if A is
low for K .

Note that there is a noncomputableK -trivial real. In contrast, if a real A sat-
isÞesC(A ! n) " C(n)+ O(1), then A should be computable. Here,C is the plain
Kolmogorov complexity. To the authorsÕ best knowledge, no characterization of
K -trivial reals by C is known.

2 Schnorr triviality

Schnorr trivial reals is a computable-measure-machine version ofK -trivial reals.
The measureof a preÞx-free machineM :# 2<! $ 2<! is ! M =

!
{ 2!| " | :

" ! dom(M )} . The measure! U of a universal preÞx-free machineU is Martin-
L¬of random, so ! M is not computable in general. If a preÞx-free machineM
has a computable measure, thenM is called a computable measure machine.
Computable measure machines naturally characterize Schnorr randomness.

A set A is called Schnorr trivial if, for every computable measure machine
M , there exists a computable measure machineN such that

K N (A ! n) " K M (n) + O(1).

Since there is no universal computable measure machine, we need to specify
machinesM and N as above.

Similarly to K -trivial reals, Schnorr trivial reals also have characterizations
by lowness. To do that, we need uniform relativization. A setA is Schnorr trivial
if and only if A is uniformly low for computable measure machines [3].
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2 K. Miyabe

3 Decidable machines

A decidable machineis a machineM :# 2<! $ 2<! such that the domain of M
is computable. Interestingly, decidable machines characterize ML-randomness,
Schnorr randomness, and Kurtz randomness [1] (and 2-randomness in some sense
[5, Theorem 4.2]).

We also have a characterization of Schnorr triviality by decidable machines
as follows. A real A is Schnorr trivial if and only if, for each decidable preÞx-
free machineM and a computable orderg, there exists a decidable preÞx-free
machine N such that

K N (A ! n) " K M (n) + g(n) + O(1).

Its reducibility version can be found in [4, Theorem 3.4, 3.5].
Schnorr triviality is also equivalent to not totally i.o. complex [2], which is

a characterization by total machines. Total machines are a decidable-machine
version of plain machines. Thus, the situation is di!erent from the case ofK -
triviality.

Further, inspired by a characterization of computable traceability by order-
lowness for preÞx-free decidable machines by [1, Theorem 24], we also give some
characterizations of Schnorr triviality via order-lowness.

As a conclusion, Schnorr triviality is a robust notion.
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On the real Gray code and
polynomial-time approximability

Akitoshi Kawamura

A set S of real numbers is said to bepolynomial-time approximableif
there is a polynomial-time oracle Turing machine that, given a name of a
real number ! and an input 0n, tells whether ! ! S correctly except for
those ! in a set of measure" 2! n . While this notion was deÞned by Ko [1]
using a speciÞc representation of real numbers, we point out that it is robust
under a certain class of equivalent representations. Among such good repre-
sentations is the one we deÞne using the idea of the Gray code embedding [3],
which can be regarded as assigning to each real number a (discrete) tally deci-
sion problem with promise. This implies some new relations between several
conjectures about polynomial-time approximable sets and randomized com-
putation. In particular, we prove that every polynomial-time approximable
interval is polynomial-time recognizable (in the sense deÞned in [2]) if and
only if the discrete complexity classBPP equalsP on tally promise problems.

Based on joint work with Ulysse L«echine.
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Online structures 
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We give a survey of the foundations of online structure theory. This work has its 

roots in the early work on efficiently computable structures, particularly polynomial-

time computable structures. We compare and contrast with the situation for computable 

structures and show that online structures often behave in surprising ways. 
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Two Propositions Between WWKL and WKL 
 

Wei Wang 

wwang.cn@gmail.com 
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    WKL stands for the formulation in second order arithmetic of Weak Koenig's 

Lemma, which says that every infinite binary tree has an infinite path. It has an easy 

measure theoretic corollary (WWKL, weak WKL) that no closed set (of Cantor space) 

with positive measure is empty. Recently, from both computability and reverse 

mathematics viewpoints, Chong, Li, Wang and Yang study a strengthened version of 

WWKL that every closed set with positive measure contains a perfect subset (i.e., a 

closed set without isolated points). Denote this proposition by P, and by P+ the even 

stronger proposition that every closed set with positive measure contains a perfect 

subset also with positive measure. Chong et al. prove that P+ follows from WKL. 

Clearly, P+ implies P and P implies WWKL. So a natural question arises whether P/P+ 

are substantially different from WKL and WWKL. A latest joint research by Barmpalias, 

Wang and Xia shows that indeed P and P+ do sit strictly between WKL and WWKL. 

But it is still unknown whether P and P+ are inequivalent. 
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Topological basis problem and Pmax

Yinhe Peng1

1Chinese Academy of Sciences, China

Abstract

The basis problem is one of the most important and fundamental
problem in topology. In some cases, it is equivalent to the metrization
problem. A family of uncountable topological spaces is a basis of all un-
countable spaces if every uncountable space has a subspace in the family.
We first introduce the background and some progress of the basis problem.
Then we will analyze the basis problem in Pmax extensions introduced by
Woodin.
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Characterization of quasi Solovay reduction via
sequences
March, 2019

Toshio Suzuki

Dept. of Mathematical Sciences, Tokyo Metropolitan University,
Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

toshio-suzuki@tmu.ac.jp

Solovay reduction is a concept that compares complexity of two real numbers.
Unlike Turing reduction, Solovay reduction is defined by means of distance of
two reals. Its origin goes back to unpublished notes by Solovay [5] in 1970s.
The relationship between Solovay reduction and randomness is an interesting
subject even today. For example, Solovay degrees are studied in this context in
[3]. General exposition on Solovay reduction may be found in [1, Chapter 9] and
in [4, §3.2].

This talk is a collaboration with Masahiro Kumabe and Yuki Mizusawa. In
the talk by Mizusawa at CTFM 2018 [7] and in the talk by Suzuki at Sendai Logic
School 2018 [8], we introduced a reduction concept by relaxing requirements in
Solovay reduction. We called it pseudo Solovay reduction: Here, we call it quasi
Solovay reduction instead. We are going to characterize quasi Solovay reduction
by means of sequences.

Suppose that α and β are real numbers. α ≤S β (α is Solovay reducible to
β) if there exist a partial computable function f from Q to Q and a positive
natural number d of the following property. For any rational x < β, f(x) ↓< α
and α− f(x) < d(β − x).

In the above, it is implicitly assumed that α − f(x) is a small positive real
number. Thus, for example, its square is less than the original. Therefore, roughly
speaking, an inequality (α−f(x))2 < d(β−x) is easier to satisfy than α−f(x) <
d(β−x). Based on such an observation, we introduce the concept of quasi Solovay
reduction as follows.

α ≤qS β (α is quasi Solovay reducible to β) if there exist a partial computable
function f from Q to Q and positive natural numbers d, ℓ of the following prop-
erty. For any rational x < β, f(x) ↓< α and (α− f(x))ℓ < d(β − x).

In the former talks [7, 8], we discussed the relationship between Solovay re-
duction and Lipschitz continuous Weihrauch computable functions, and the re-
lationship between quasi Solovay reduction and Hölder continuous Weihrauch
computable functions. For Weihrauch computable function, consult [6].

Incidentally, Solovay reduction has many equivalent assertions. A result of
Downey et al. [2] (see also [1, Lemma 9.1.7]) is as follows. Suppose that α and β
are left-c.e. reals and that {rn} is a computable increasing sequence of rationals
that converges to β. Then α ≤S β if and only if there is a computable increasing
sequence {pn} of rationals that converges to α and there is a positive constant
d such that for all n ∈ N it holds that pn − pn−1 < d(rn − rn−1).
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2

We show that for left-c.e. reals α and β, the following are equivalent.

1. α is quasi Solovay reducible to β.
2. There are computable increasing sequences {pn}, {rn} of rationals such that

pn → α, pn → β, and there are positive constants d and ℓ such that for all
m ∈ N and for all n < m it holds that (pm − pn)ℓ < d(rm − rn).

The direction of (2)⇒ (1) is given by taking limit of m → ∞ . By carefully
examining our construction of Hölder continuous function in the former talks,
we show the direction of (1)⇒ (2).
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There is no strong minimal pair 
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Nanyang Technological University 

 

 

    A strong minimal pair in r.e. degrees is defined to be a pair of A and B such that 

they are incomparable and for any non-recursive r.e. set W below A, B+W computes A. 

Historically, this was a interesting problem. Slaman showed a weaker version of this, 

that is, B+W computes a third set C instead of A. This is called Slaman-Triple nowadays. 

Only recently, people showed that there is a strong minimal pair. However, we realized 

that there is a problem in that paper. Then we turned the problem into a proof that there 

is no strong minimal pair. In this talk, we will sketch the proof. This is joint work with 

Mingzhong Cai, Yiqun Liu, Cheng Peng, Yue Yang. 
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Combinatorial implication o f computability theory  
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    Most of newly arising computability theory (reverse math, algorithmic 

randomness theory or even computable model theory) has close connection with 

combinatorics, and in many cases, finite combinatorics. In this talk we show that a 

relativized version of a naturally arised reverse math question is equivalent to a (purely) 

combinatorial question. 
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Permission and Obligation in Ceteris Paribus!

Huimin Dong

Zhejiang University, Hangzhou, China
huimin.dong@xixilogic.org

1 Motivation

This paper is motivated to formalize permission and obligation as su! cient and neces-
sary conditions for being normatively Þne [1, 6], governed by the concept calledceteris
paribus. What we propose aims at providing a general theory to illustrate the founda-
tions behind some deontic paradoxes in natural language, like the Lewis problem, the
Ross paradox, and the gentle murder problem [15, 16]. More further it also intends to
provide a new formal tool to solve the so-called the equilibrium selection problem in
game theory [13].

Two well-known families of deontic logics, deontic action logics (DAL) [5, 1] and
deontic preference logics (DPL) [20, 7], also follow the same principle for permis-
sion and obligation, but evaluate what is ought/permitted to do by di" erent conceptual
criterions, the Right or the Good. These two approaches solve the infamous deontic
paradoxes, like the Lewis problem [15], the Ross paradox, and the gentle murder para-
dox [16], by developing di" erent theoretical methodologies. The methods DAL usu-
ally emphasizes that di" erent complicate algebraic interpretations on actions can com-
bine with the Right by ideality [5, 1], but which cost a pay on the intuition of actions
and result very weak logics. On the other hand, DPL usually adopts the similarity-
based preference to deÞne obligation as what is the best given everything else being
equal [19, 20, 7]. Such a similarity-based method is natural and o" ers rich enough log-
ics. However, they are hard to get rid of the Ross paradox and the Lewis problem.

This paper proposes a plausible middle ground in between, which adopts the Right
as the conceptual standard, and takes the natural intuition of similarity for actions. Here
we understandceteris paribusin term of similarity. We follow two senses of it proposed
by Schurz (see [17]), the static one and the dynamic one, in order to describe the natures
of permission and obligation. The two meanings ofceteris paribusare later axiomatized
in logics, which retain rich principles of permission and obligation as su! cient and
necessary conditions for being normatively right, and capture the above two characters
of ceteris paribus. We leave the detailed proofs to the full paper.

! The author is supported by the China Postdoctoral Science Foundation funded project [No.
2018M632494], the PIOTR research project [No. RO 4548/4-1], the MOE Project of Key Re-
search Institute of Humanities and Social Sciences in Universities [No. 17JJD720008], the Na-
tional Social Science Fund of China [No. 17ZDA026], and the Fundamental Research Funds
for the Central Universities of China. The author thanks Johan van Benthem, Fan Jie, Olivier
Roy, Patrick Blackburn for the insightful comments and inspirations. The author also thanks
for the reviewers of AWPL 2018 and NCML 2018 and the participatants of NCL 2018, ISLU
2018, and the PIOTR workshop 2018 for the helpful comments.

26



2 H. Dong

2 Formal Theory

Permission is what does stay to be normally Þne, underlying on Òeverything else are
equal.Ó The staticceteris paribusin this sense is captured by the concept of likelihood
(or similarity), followed after the accounts developed in [14, 10, 19]. So permission
is deÞned in the style of free choice permission [18]. The case that Òif" thenceteris
paribus#Ó is interpreted as Òin the most likely states satisfying" , # is the case.Ó Obli-
gation is standard [16]. But permission is based on the notion ofceteris paribus, which
is not a dual of obligation as in standard deontic logic [11].

DeÞnition 1 (Language).The setL of well-formed formulas of norms are deÞned as
follows:

" := p | " ! " | Â" | P" | O" | " ! #

where p" Prop is an element of the (countable) set of atomic propositions.

We readP" as Òit is permitted that" Ó andO" that Òit is obligated that" .Ó The formula
" ! # is interpreted as Ò# is at least more likely than" Ó (see [10]). The formula" ! # !
#! " is denoted as" $% #, which indicated that" and# is equally likely. Following [19],
we deÞneA" := Â" ! # , and so its dualE" := ÂAÂ" .

DeÞnition 2 (Deontic Models).A deontic model M is a tuple$W,R,%,V&where:

Ð W is a non-empty Þnite set of states;
Ð R ' W ( W is serial;
Ð %is a similarity relation1 on W( W s.t.%is reßexive, transitive, and connected;
Ð V : Prop ) &(W) is a valuation function.

Rwumeans that from statew stateu is normatively Þne. We readu %s as Òu is at least
as similar or likely tosÓ [9]. We can see that a similarity relation%is a partial well-
order. With the Þnite domainW we can make sure that a maximal element exists in it
(see [10]). We deÞne the strict order< as:u < v i" u %v andv ! u. We then deÞne
maximality by using the similarity relation: max%(X) = {v " X | *u " X s.t.u % v}.
Moreover, we denoteS[w] = {u | S wu} whereS " { R,%}, and||" || = {w | M,w |= " }.
The truth conditions for permission and obligation are deÞned as follows:

M,w " P" i" max%(||" ||) ' R[w]
M,w " O" i" R[w] ' || " ||

The similarity modality! is the%*+ modality well discussed in [19] and further devel-
oped in [9]:

M,w " " ! # i" * u " W+v " W s.t. (M,u |= " , M,v |= # & u %v)

This implies thatA is a universal modality andE is an existential modality:

M,w |= A" i" * u " W s.t.M,u |= "
M,w |= E" i" +u " W s.t.M,u |= "

1 v is at least as similar asu is whenu %v, andv is strictly more similar thanu whenu < v [9].
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Permission and Obligation in Ceteris Paribus 3

We then introduce# ("/# ), read as Òif" then,ceteris paribus, #,Ó into the language.
The formula# (- /" ) can be simpliÞed as# " , and its dual$" = Â# Â" . The abbrevi-
ation# " can be read as Òit isceteris paribusthat" . The formula# ("/# ) ! # (#/" ) is
denoted as# (" | #). The modality# is interpreted by maximality as follows:

M,w " # ("/# ) i" max%(||" ||) ' || #||.

This condition can be used to by similarity [4, 21]:

M,w |= # ("/# ) i" * x [M, x |= " , + u . x (M,u |= " & * s . u (M, s |= " ) #))]

Obvious it results a reduction of the staticceteris paribusby similarity relation:

# ("/# ) / A[" ) Â (" ! (" ! Â #))]

The second sense ofceteris paribus, Òeverything else being right,Ó is that it cannot
bechangedby other things interfere it. After considering all interferences, namely ex-
ceptions, the meaning of aceteris paribussentence is settled down. Now we develop
a dynamic logic for theceteris paribussentences. First we need to have a method to
clarify the scope ofexceptionin a ceteris paribussentence. We Þrst deÞneU(" ) as the
set of all atomic propositions occurring in" as follows:

U(p) = {p}

U(" ! #) = U(" ) 0 U(#)

U(Â" ) = U(" )

U(P" ) = U(" )

U(O" ) = U(" )

U(# ("/# )) = U(" ) 0 U(#)

Given a Þnite set' of formulae, we deÞneU(' ) as the set of all atomic propositions
occurring in' , i.e.U(' ) =

!
" " ' U(" ). After we can deÞneC(" ) as the scale about the

disturbing factors regarding" , represented by all atomic propositions occurring in" as
follows: C(" ) = {{±p | p " U(" )} | either ± p = p or ± p = Âp}. We then deÞneC(' )
the scope of' as follows:C(' ) = {{±p | p " U(' )} | either ± p = p or ± p = Âp}.
Observe thatC(' ) exhausts all possible exceptions regarding' , while each exception
in C(' ) is mutually exclusive to each other. After clarifying the scope of exceptions or
interferences, we introduce the exclusive models to illustrate the update of exception.

DeÞnition 3 (Exclusive Models).An exclusive modelC' is a tuple$C,1&deÞned as
follows:

Ð C = C(' );
Ð 1' C ( C is reßexive, transitive, and connected.

We usec 2 d to denotec 1 d andd 1 c. Because' is Þnite,C(' ) should be Þnite as
well. This leads to that1 is conversely well-founded2. As the similarity can a" ect nor-
mality and the normative notions in the update, we understandc 1 d as ÒThe exception
c is morenormatively salientthan the exceptiond.Ó Notice that3=1 4 2 .

2 It mean that1 is not an inÞnite right branching order [8].
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4 H. Dong

DeÞnition 4 (Updated Models).Given M = $W,R,%,V&andC' = $C,1&. We deÞne
the updated model M5 C' = $W6,R6,%6,V6&as follows:

Ð W6 = {(u, c) | M,u |= c where c" C}; 3

Ð (u, c) %6 (v,d) i! either c3 d or (c 2 d but u%v);
Ð (u, c)R6(v, d) i! uRv and c1 d; 4

Ð (u, c) " V6(p) i! u " V(p).

The truth condition of' -scope updated is denoted as|| á ||' . Notice that if there are
c,d " C s.t. M,w |= c andM,w |= d, then it must be the case thatc andd are the same
exception inC. We call this phenomenonexception preserving. After the update, the
updated similarity%6 in the new model is conversely well-founded. This observation
indicates that permission and normality are still well-deÞned in the updated model. The
updated order is generated by the so-calledlexicographic upgrademethodology [20],
which here is presented by together a similarity over exceptions with a similarity over
states. Moreover, because1 in an exclusive model is reßexive, it implies that it is also
serial. It then results thatR6 is serial in the updated model. Note that what was norma-
tively Þne can be cancelled after update, if it was not normatively salient enough.

The dynamic sentence$' &" is added up into the language. The dual of$' &" is [' ]" ,
namelyÂ$' &Â" . We read$' &" as ÒIt is the case that" , Provisos' .Ó5 Its truth condition
is deÞned as:

M,w |= $' &" i" +(w, c) " W6 s.t.M 5 C' , (w, c) |= "

Observe that$' &has the same truth condition as [' ] does, by the so-called exception-
preserving regarding' . As thatC(' ) exhausts all possible consistent exceptions regard-
ing ' , there must be ac " C(' ) s.t.c is satisÞed atw. Together with the exception pre-
serving property, it is not hard to see that [' ] and$' &have the same truth conditions. In
particular, we have the following equivalence:M 5 C' , (w, c) |= " i" M,w |= c ! $ ' &" .

The axiomatization of permission, obligation, andceteris paribusis structured into
two parts. The static part involves axioms and rules in a standard manner. The binary
modality! follows the axioms and rules suggested in [10], while# follows those in [4].
TheO-modality is the D-modality in modal logic [3], but theP-modality is not the dual
of O anymore. Rather,P-modality satisÞes the axioms presented in Table 1.

Theorem 1. The system in Table 1 is (weakly) sound and complete.

In our paper the compleneteness of the static logic (in Table 1) is proven by Þnite canon-
ical model followed after [22]. The dynamic part (in Table 2) follows the methodology
of reduction in [2, 20] for dynamicceteris paribus. The dynamic operator illustrates the
complex update apparatus in the syntax level, bridging the notion of exception with the
staticceteris paribus.

Theorem 2. The system in Table 2 is (weakly) sound and complete.

3 Here we simplifyM,w |=
"

±p" c ±p asM,w |= c.
4 A similar suggestion please refer to [23].
5 Provisosmeans Òproviding some disturbing factors are absent.Ó
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- Tautologies
- The binary modality! satisÞes the axioms and rules suggested in [10]
- The binary modality# satisÞes the axioms and rules suggested in [4]
- O is a D-modality
- OiC: O" ) E"
- PtF:P#
- RFCP:P" ! P# ) P(" 7 #)
- FCP:P" ! # (#/" ) ) P#
- OWP:O" ! P# ) # (#/" )

Table 1.The logicN for Permission Obligation in StaticCeteris Paribus

- [' ] p /
"

c" C(c ) p)
- [' ]" ! # / [' ]" ! [' ]#
- [' ]Â" /

"
c" C(c ) Â [' ]" )

- [' ]O" /
"

c" C(c )
"

d8c O(d ! $ ' &" ))
- [' ]P" /

"
c" C{c )

"
d" C[(A

"
e9d ' e

" ) P
#

e2d Â' e
" ) !

"
d! c # (

#
e2d Â' e

" / E
"

e9d ' e
" )]}

- [' ](" ! #) /
"

c" C{c )
"

d" C[A(
#

e2d Â' e
" ) E

#
e9d Â' e

#) 7 (
#

e2d Â' e
" ) ! (

#
e2d Â' e

#)]}
where' c

" := c ) [' ]Â"
Table 2.Reduction Axioms for DynamicCeteris Paribus

3 Conclusion

This paper has argued that permission and obligation should be viewed as the su! cient
and necessary conditions for the Right, but should be governed under the principlece-
teris paribus. This view point turns to a general formal theory of a (weakly) sound and
complete dynamic logic for permission and obligation, which can answer the Lewis
problem, the gentle murder puzzle, the Ross paradox, and the equilibrium selection
problem. This theory is theoretically rich, because it includes a great number of interac-
tions between permission, obligation, andceteris paribus. It is also expressive enough
such that a fragment of DPL is one of its special cases, speciÞed that the bestness is a
particular case of the rightness. All details are left in the full paper.

In the future we want to discuss the issue of whether the similarity relation is con-
nected. Intuitively a similarity is more common to be non-comparable [12]. Connected-
ness captures an important kind of norm called overall norms, which satisfy the standard
consistency principle (axiom D). Non-connectedness captures theprima facienorms
more properly. A natural question rises up: What about the consistency principle for the
non-connectedprima facienorms? We leave it open for the future research.
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    Infinite time Turing machines were first studied and introduced by Hamkins, 

Kidder and Lewis. With infinite time Turing machines, we have infinitary analogues of 

classical concepts. An infinite time analogue of Borel equivalence relation theory is the 

theory of equivalence relations that are decidable by an infinite time Turing machine, 

i.e., the Borel reductions are replaced by the infinite time computable reducibility. This 

approach retains much of the Borel analysis and results, with the added bonus that it 

becomes sensible to study some special equivalence relations whose complexity is 

beyond Borel.  

    In this talk, we will introduce the basic idea of infinite time decidable equivalence 

relations and some interesting questions in this area. 
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Abstract

A model of a T1 topological spaceX is a posetP such that the set of maximal
points of P with the relative Scott topology is homeomorphic to X . In this paper, we
prove that (i) a T1 space is Baire if and only if it has a dcpo model whose Scott space
is Baire; (ii) a T1 space is Choquet complete i! it has a dcpo model whose Scott space
is Choquet complete; (iii) a T1 space has a quasicontinuous dcpo model i! it has a
continuous dcpo model.

33



Some Su!cient Conditions for Boolean
UnsatisÞability via Linear Algebra

Chengling Fang1 and Jiang Liu2

1 Chongqing Jiaotong University.
chenglingfang@cqjtu.edu.cn

2 Chongqing Institute of Green and Intelligent Technology,
Chinese Academy of Sciences.

liujiang@cigit.ac.cn

Abstract

The problem of determining whether a Boolean formula is unsatisÞable is called
Boolean unsatisÞability (UNSAT) problem. Its opposite the Boolean satisÞabili-
ty (SAT) problem is famous in mathematical logic and computing theory, which
is one of the Þrst proven NP-complete problems [3, 7]. SAT is widely studied
because of its well known signiÞcance on both of theory and practice [6, 1].

Based on the DPLL method [5, 4], there were developed a large number of
high-performance algorithms for SAT: local search algorithms, stochastic algo-
rithms, conßict-driven clause learning algorithms, and so on. Most DPLL-based
methods can be developed to study UNSAT. However, contrasting the large
number of studies about SAT, there were a few direct work [2] about UNSAT.
In practice, it was ever for a long time that there was no local search algorith-
m for UNSAT before GUNSAT [2] was proposed. Therefore it [6] was eagerly
concernedwhether a procedure dramatically di!erent from DPLL can be found
for handing UNSAT . This study presents a linear algebra formulation (LAF) to
address this issue e!ciently.

The basic idea of LAF for UNSAT is in what follows. It Þrst converts the
UNSAT problem into a 1-in-3-UNSAT problem. A 3-CNF formula is called 1-in-
3 satisÞable if there is a truth assignment to its Boolean variables such that each
clause has exactly one true literal, otherwise 1-in-3 unsatisÞable. The 1-in-3-SAT
problem is to determine whether a 3-CNF formula is 1-in-3 satisÞable, which is
NP -complete [8]. Similarly, the 1-in-3-UNSAT problem is to determine whether
a 3-CNF formula is 1-in-3 unsatisÞable. Then, the 1-in-3-UNSAT problem is
converted into a Boolean solution (BoS) problem of the corresponding linear
system, where a BoS is a solution composed merely of 0 and 1. For the result-
ed linear system, we develop an iterated linear algebraic method to e!ciently
test whether it has any BoS. Through this approach, we obtain some su!cient
conditions for UNSAT. Our experiments result Table. 1 showed that the new
method works for many Boolean unsatisÞable instances. In the table, #V and
# C denote the numbers of Boolean varibles and clasues in each instance in the
# T many randomly generated 3-CNF formulaes. Among these #T 3-CNF for-
mulaes, the LAF algorithm can conÞrm that, #1-in-3-SAT many of them are
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Table 1. Implementation of LAF Algorithm

# V # C # T # Unk # 1-in-3-SAT # 1-in-3-UNSAT
50 41 100 12 9 79
50 46 100 0 0 100
70 58 100 8 0 92
70 66 100 0 1 99
90 74 100 11 0 89
90 82 100 0 0 100
130 109 100 15 0 85
130 118 100 0 0 100
150 125 100 36 0 64
150 136 100 0 0 100

1-in-3-SAT, #1-in-3-UNSAT many of them are 1-in-3-UNSAT, and #Unk many
of them are remained no answer as to their 1-in-3-SAT.

Through LAF, this study gave an a!rmative answer to the question in the
end of Challenge 1 in [6]. In fact, we developed two polynomial time algorithms
for unsatisÞability testing based upon LAF. However, we must concede that this
method should be incomplete; otherwise, it will imply P=co-NP. Nevertheless,
LAF has been employed to successfully prove 1-in-3-UNSAT for many nontrivial
cases as showed in the experiments.
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ABSTRACT

The Ramsey property of sets of reals have been studied in descriptive set
theory. These Ramsey properties also have been investigated in second-order
arithmetic. In this talk, we Þrstly review classical results on the Ramsey prop-
erties.
On the other hand, Tanaka [1] showed that, over ZFC, the determinacy of
certain inÞnite game over reals implies the Ramsey property. Our goal is to
formalize this argument to connect, within second-order arithmetic, the Ramsey
properties with the determinacies of inÞnite games, which are independent of
ZFC.
This is an ongoing work, so we will give some motivations and current progress
on this work.
This is a joint work with Kazuyuki Tanaka.

References
[1] K. Tanaka, A Game-Theoretic Proof of Analytic Ramsey Theorem,

Zeitschrift f¬ur Mathematische Logik und Grundlagen der Mathematik
38 (1992): 301Ð304.

36



The eigen-distribution for multi-branching trees on
independent distributions

Weiguang Peng

School of Mathematics and Statistics, Southwest University, China

Abstract

Game tree is an important model of computation in the area of theoretical

computer science. We are interested in the query complexity on game trees

with respected to di!erent kinds of distributions and classes of deterministic

algorithms. Liu and Tanaka (2007a, 2007b) characterized the Eigen-distributions

that achieve the distributional complexity, and they asserted that if the Eigen

distribution for any uniform binary AND-OR tree is achieved by an independent

distribution (ID), then it is an independent and identical distribution (IID).

However, (2007) does not include a proof of the assertion. Suzuki and Niida

(2015) gave a proof for the case where the probability of the root is constrained

for uniform binary trees and showed Liu-TanakaÕs assertion. Subsequent to

Suzuki and NiidaÕs prominent work on uniform binary trees, Penget al. (2017)

Þnally proved tLiu-TanakaÕs assertion for balanced multi-branching AND-OR

trees with the condition that the root can not be 0 or 1. In this talk, we show

that ID is an IID when the distributional complexity holds without considering

the constraints on probability.
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  ���&���0 37 �  
 
3) �)���/ ���� �(�)�-���������5�	�!�� 18.6km 

A �7�1�� ���= 2 ���1���)���,�8�/            �4�:���� B ��������

�'�3 770m 

  �#�>���0 50 ���<  

  ���&�� 4 �  

B �7�1�� �
�����.�8  

  �#�>���0 32 ���<  

  ���&���0 54 �  
 

4) �(�$�/ ���� �(�)�-���������5�	�!�� 6.1km 

A �7�1�� ���= 4 ���1�9 2 ���1���(�$�,�8�/              �+��� ��            

        �4�:���� B ���������'�3 770m 

  �#�>���0 34 ���<  

  ���&�� 2 �  

�@�;���"��  

���= 4 ���1  

���= 2 ���1  

���6� ���"��  

���= 4 ���1  

�( � ) � , �8� / �"

��  

���6� ���"��  

���= 2 ���1  

���= 2 ���1  

���6� ���"��  

���= 2 ���1  

���6� ���"��  
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B �7�1�� �
�����.�8   

  �#�>���0 17 ���<  

  ���&���0 14 �  
 
5���4�:�����=�/ B ����  (�2��� ���� )���� �(�)�-���������5�	�!��

�'�3 770m 
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Airport  / Train Station to the Conference Center 

1�� Wuhan Tianhe International Airport ���� Conference Center�� 43.7km 

Route A: By Subway Line 2. Wuhan Tianhe International Airport    

           Jiedaokou Station (Exit B), Walk 770 meters 

  Time: 1hour and 39minutes             Cost: ��6  

  Route B: By taxi 

  Time: 49 minutes                     Cost: ��110  

 

2�� Wuhan High-speed Railway Station���� Conference Center�� 17.5km 

Route A: By Subway Line 4 and Line 2. Wuhan Railway Station 

              Zhongnan  Road(TransferStation)                 Jiedaokou 

station (Exit B), Walk 770meters 

  Time: 53 minutes                      Cost: ��4  

Route B: By taxi 

  Time: 30 minutes                      Cost: ��37 ��

 

3�� Hankou Railway Station���� Conference Center�� 18.6km 

Route A: By Subway Line 2.Hankou Railway Station             

Jiedaokou station (Exit B), Walk 770 meters 

  Time: 50 minutes                      Cost: ��4 ��

Route B: By taxi 

  Time: 32 minutes                      Cost: ��54 ��

 

4�� Wuchang Railway Station���� Conference Center�� 6.1km 

Route A: By Subway Line 4 and Line 2. Wuchang Railway Station 

      Hongshan Square (Transfer Station)             

      Jiedaokou station (Exit B), Walk 770 meters 

  Time: 34minutes                      Cost: ��2  

Route B: By taxi 

  Time: 17 minutes                      Cost: ��14 ��

 

5�� Jiedaokou station(Exit  B) � � � �  Conference Center: 770 meters by 

walking 

Remarks: For Subway Line 2, the station Optics Valley Square Station is also called 

as Guanggu Square Station��

Subway Line 4 

To Huangjinkou Station 

Subway Line 

2 To Optics Valley Square 

Subway Line 2 

To Optics Valley Square 

 

Subway Line 4 

To Wuhan Railway Station 
Subway Line 2 

To Optics Valley Square 

 

Subway Line 2 

To Optics Valley Square 
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Conference Venue  
��

Mafangshan campus of Wuhan University of Technology  

122 Luoshi Road, 430000, Wuhan, Hubei, China. 

 

��

Meeting Room 

Public Lecture: Conference Centre, Room 301 

Conference talk: Conference Centre, Room 104  

 

 

Conference Homepage: 

www.ctfm2019.com 
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